Chaperone-fusion expression plasmid vectors for improved solubility of recombinant proteins in Escherichia coli.
نویسندگان
چکیده
The enteric bacterium Escherichia coli is the most extensively used prokaryotic organism for production of proteins of therapeutic or commercial interest. However, it is common that heterologous over-expressed recombinant proteins fail to properly fold resulting in formation of insoluble aggregates known as inclusion bodies. Complex systems have been developed that employ simultaneous over-expression of chaperone proteins to aid proper folding and solubility during bacterial expression. Here we describe a simple method whereby a protein of interest, when fused in frame to the E. coli chaperones DnaK or GroEL, is readily expressed in large amounts in a soluble form. This system was tested using expression of the mouse prion protein PrP, which is normally insoluble in bacteria. We show that while in trans over-expression of the chaperone DnaK failed to alter partitioning of PrP from the insoluble inclusion body fraction to the soluble cytosol, expression of a DnaK-PrP fusion protein yielded large amounts of soluble protein. Similar results were achieved with a fragment of insoluble Varicella Zoster virus protein ORF21p. In theory this approach could be applied to any protein that partitions with inclusion bodies to render it soluble for production in E. coli.
منابع مشابه
Stability of Recombinant Proteins in Escherichia coli: The Effect of Co-Expression of Five Different Chaperone Sets
Chaperones are produced by prokaryotic, yeast and higher eukaryotic cells for various purposes. Over-expression of each chaperone or sets of them affect the production level of a recombinant protein in the cell. On the basis of this hypothesis, five different plasmids with 5 different combinations of 6 chaperones molecule, transformed into Escherichia coli along with human basic Fibroblast Grow...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملOverexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli
Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks and bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon ...
متن کاملCo-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli
Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....
متن کاملOverexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli
Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks and bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 440 1-2 شماره
صفحات -
تاریخ انتشار 2009